Eight Limit cycles around a Center in quadratic Hamiltonian System with Third-Order perturbation

نویسندگان

  • Pei Yu
  • Maoan Han
چکیده

In this paper, we show that generic planar quadratic Hamiltonian systems with third degree polynomial perturbation can have eight small-amplitude limit cycles around a center. We use higher-order focus value computation to prove this result, which is equivalent to the computation of higher-order Melnikov functions. Previous results have shown, based on first-order and higher-order Melnikov functions, that planar quadratic Hamiltonian systems with third degree polynomial perturbation can have five or seven small-amplitude limit cycles around a center. The result given in this paper is a further improvement.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bifurcation of limit cycles from a quadratic reversible center with the unbounded elliptic separatrix

The paper is concerned with the bifurcation of limit cycles in general quadratic perturbations of a quadratic reversible and non-Hamiltonian system, whose period annulus is bounded by an elliptic separatrix related to a singularity at infinity in the poincar'{e} disk. Attention goes to the number of limit cycles produced by the period annulus under perturbations. By using the appropriate Picard...

متن کامل

Ten limit cycles around a center-type singular point in a 3-d quadratic system with quadratic perturbation

In this paper, we show that perturbing a simple 3-d quadratic system with a center-type singular point can yield at least 10 small-amplitude limit cycles around a singular point. This result improves the 7 limit cycles obtained recently in a simple 3-d quadratic system around a Hopf singular point. Compared with Bautin’s result for quadratic planar vector fields, which can only have 3 small-amp...

متن کامل

Second-order analysis in polynomially perturbed reversible quadratic Hamiltonian systems

We study degree n polynomial perturbations of quadratic reversible Hamiltonian vector fields with one center and one saddle point. It was recently proved that if the first Poincaré–Pontryagin integral is not identically zero, then the exact upper bound for the number of limit cycles on the finite plane is n− 1. In the present paper we prove that if the first Poincaré–Pontryagin function is iden...

متن کامل

Bifurcation of limit cycles in 3rd-order Z2 Hamiltonian planar vector fields with 3rd-order perturbations

In this paper, we show that a Z2-equivariant 3rd-order Hamiltonian planar vector fields with 3rd-order symmetric perturbations can have at least 10 limit cycles. The method combines the general perturbation to the vector field and the perturbation to the Hamiltonian function. The Melnikov function is evaluated near the center of vector field, as well as near homoclinic and heteroclinic orbits. ...

متن کامل

Limit cycles for a quadratic perturbation of a quadratic polynomial system

The weak Hilbert 16th problem was solved completely in the quadratic case; that is, the least upper bound of the number of zeros of the Abelian integrals associated with quadratic perturbations of quadratic Hamiltonian systems is known. See [3, 4, 5, 8, 10] and the references therein. The next natural step is to consider the same problem for quadratic integrable but non-Hamiltonian systems. Mos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • I. J. Bifurcation and Chaos

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2013